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Abstract

The interaction between a pair of Bloch fronts forming a traveling domain in a bistable medium is studied. A parameter
range beyond the nonequilibrium Ising-Bloch bifurcation is found where traveling domains collapse. Only beyond a second
threshold the repulsive front interactions become strong enough to balance attractive interactions and asymmetries in front
speeds, and form stable traveling pulses. The analysis is carried out for the forced complex Ginzburg-Landau equation.
Similar qualitative behavior is found in the bistable FitzHugh-Nagumo model. © 1997 Published by Elsevier Science B.V.

Traveling waves far from equilibrium are often
formed when a uniform state is destabilized by a Hopf
bifurcation occurring at a finite wavenumber [1].
Traveling waves or pulses also form from parity
breaking bifurcations of stationary patterns [2]. A
related mechanism that has not received adequate
attention involves a parity breaking front bifurcation
in which a stationary front solution loses stability
to a pair of counter-propagating front solutions [3-
6]. This bifurcation, sometimes referred to as the
nonequilibrium Ising-Bloch (NIB) bifurcation, has
been found in chemical reactions [7,8] and in lig-
vid crystals [9,10]. Bistable systems, which do not
necessarily support stationary patterns, may exhibit
traveling pulses and waves beyond the NIB bifurca-
tion. Activator-inhibitor systems with nondiffusing
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inhibitors provide a good example. For fast inhibitor
kinetics initial domain patterns always coarse grain
and converge to a uniform state. For sufficiently slow
kinetics, and beyond the NIB bifurcation, traveling
pulses, periodic wave trains, and spiral waves appear.

Numerical studies of systems with a NIB bifurca-
tion indicate that traveling pulses do not appear im-
mediately at the front bifurcation point. Instead, there
is an intermediate parameter range where initial do-
mains may travel but eventually collapse. Only past a
second threshold parameter value do initial domains
converge to stable traveling pulses [5]. In this paper
we study the interactions between a pair of traveling
fronts in this intermediate parameter range. We find
that the balance of repulsive front interactions with at-
tractive interactions and an asymmetry between lead-
ing and trailing fronts gives this threshold parameter
value.

We choose to study the parametrically forced com-
plex Ginzburg-Landau (CGL) equation
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A= (p+iv)A+ (1 +ic)) A
— (1 +ic3)|AI*A + yA* + a, (1)

where A(x,t) is a complex field and »,¢;,c3 and y
are real parameters. The parameter o can be a com-
plex number, but since the final results we present
here do not depend on its imaginary part we assume a
is also real * . The CGL equation (y = @ = 0) is often
obtained as an envelope equation for an extended sys-
tem undergoing a Hopf bifurcation at zero wavenum-
ber [11]. Then, the variable A(x,t) describes weak
modulations of the homogeneous oscillations. The
terms « and yA* in (1) represent, respectively, the
effect of parametric forcing with equal and twice the
system’s natural oscillation frequency [12] 3.Eq. (1)
has been introduced recently in the context of liquid
crystals [13].

The parametric forcing term yA* breaks the phase
shift symmetry, A — Ae'®, of Eq. (1) and reduces
the one-parameter family of cw solutions of the CGL
equation, A = Aoe!*~HHP () < ¢ < 271, to two
pairs of stable—unstable solutions with fixed ¢ values,
arising in saddle-node bifurcations. Eq. (1) therefore
describes a bistable extended system of two stable uni-
form states that oscillate with different phases. The
second forcing term, a, breaks the parity symmetry
(A — —A) of these two states. The front solutions
we will be concerned with connect these two states at
x — Foc.

A simpler, gradient version of Eq. (1) is obtained
by omitting the linear and nonlinear dispersion terms,

Ar=pA+ Ay — |APA+7A* +a. (2)

A physical application of (2) is Rayleigh-Bénard con-
vection with periodic spatial modulation of the cell
height [14] or heating [15]. When @ = 0, Eq. (2)
has three types of stationary front solutions,

I(x;0)=0Ag tanh(%on), (3)

B.i(x;0) =oAptanh(kx) +iy/u — 3y sech(kx),
4)

4 The imaginary part of @ may contribute, however, to higher
order corrections not considered considered here.

5Eq. (1) is obtained assuming that the detuning » of the forcing
at the system’s natural frequency is exactly half the detuning of
the forcing at twice the natural frequency.
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Fig. 1. The nonequilibrium Ising-Bloch (NIB) bifurcation for
front solutions of Eq. (1). For v > v, there is a single stable
Ising front with zero speed (solid line). For y < . the Ising front
is unstable (dashed line) and a pair of stable counterpropagating
Bloch fronts appears (solid lines). Parameters: x = 1.0, » = 0.01,
ci=c3=a=00.

where Ap = /L + 7, k = /2y and o = %1 is the
front polarity which stems from the reflection symme-
try x — —x of Eqs. (2) and (1). The front solutions
I(x;0) and B4 (x; o) are equivalent to Néel (Ising)
and Bloch domain walls in ferromagnets with weak
anisotropy [4] and will be referred to as Ising and
Bloch fronts. The Ising front I(x; o) loses stability
as v is decreased past the critical value y, = u/3. At
that point the two Bloch fronts B4 (x; o) appear and
are stable [4].

The nongradient terms associated with ¥, ¢; and c3
remove the degeneracy of the three stationary solu-
tions (3) and (4). With any of these terms nonzero,
the two Bloch fronts propagate in opposite directions
at a speed proportional to the corresponding coeffi-
cient, »,c; or ¢3 [4]. In that case, a plot of the front
velocity, ¢, versus 7y yields the NIB bifurcation dia-
gram shown in Fig. 1.

To study front interactions we consider the symmet-
ric {(a = 0) and nearly gradient case, where front so-
lutions of (1) can be expanded around front solutions
of the gradient system (2). We introduce a small pa-
rameter € < | and assume that the constants v, «, ¢,
and c3 are all of order e. We also assume proximity
to the Ising-Bloch bifurcation point, u — 3y ~ /€. A
traveling domain solution of Eq. (1) is sought as

A(x,t) =By[x — x(T);+1]
+B_[x—x(T);—1] — Ao+ R(x,T), (5)

where x; and x; are the positions of the leading (right)






